首页 星云 工具 资源 星选 资讯 热门工具
:

PDF转图片 完全免费 小红书视频下载 无水印 抖音视频下载 无水印 数字星空

基于注意机制的GAN用于SAR和光学图像去云

后端 12.58MB 9 需要积分: 1
立即下载

资源介绍:

这个库为我们的论文“通过基于注意机制的GAN使用SAR和光学图像去云”提供PyTorch代码。此代码基于的实现注意GAN和CycleGAN.
# Cloud removal using SAR and optical images via attention mechanism-based GAN This repository provides the PyTorch code for our paper “Cloud removal using SAR and optical images via attention mechanism-based GAN”. This code is based on the implementation of [Attention-GAN](https://github.com/xinyuanc91/Attention-GAN) and [CycleGAN](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix). ## Overview The pipline of our method: ![图片](/fig/pipline.png "method pipline") The result of our method: ![图片](/fig/result.png "result") *Cloud removal results in the real data experiment. Each row corresponds to an example of the results. Column (a) shows the SAR images. Column (b) shows the attention map. Column (c) shows the cloud images. Columns (d) to (h) correspond to the results obtained by the pix2pix model, the SAR-opt-GAN model, the Simulation-Fusion GAN model, the GLF-CR model, and the proposed model. Column (i) shows the ground truth images.* ## Data We use part of the data from the [SEN12MS-CR dataset](https://patricktum.github.io/cloud_removal/sen12mscr/) in the paper. You should organize your data into a format like this, replacing them with the data directory in this code: ``` data │ └───train/test │ │ │ └───trainA/testA #cloud images │ │ │ 1.png │ │ │ 2.png │ │ │ ... │ │ │ └───trainB/testB #cloudless images │ │ │ 1.png │ │ │ 2.png │ │ │ ... │ │ │ └───trainC/testC #SAR images │ │ │ 1.png │ │ │ 2.png │ │ │ ... │ ``` ## Environment You can Install dependencies via: ```bash conda env create --file environment.yml ``` ## Train sh scripts/train.sh ## Test sh scripts/test.sh ## Citation If you find this repository/work helpful in your research, welcome to cite the paper. ``` @article{zhang2023cloud, title={Cloud removal using SAR and optical images via attention mechanism-based GAN}, author={Zhang, Shuai and Li, Xiaodi and Zhou, Xingyu and Wang, Yuning and Hu, Yue}, journal={Pattern Recognition Letters}, volume={175}, pages={8--15}, year={2023}, publisher={Elsevier} } ```

资源文件列表:

AttentionGAN-for-Cloud-removal-master.zip 大约有136个文件
  1. AttentionGAN-for-Cloud-removal-master/
  2. AttentionGAN-for-Cloud-removal-master/README.md 2.23KB
  3. AttentionGAN-for-Cloud-removal-master/data/
  4. AttentionGAN-for-Cloud-removal-master/data/__init__.py
  5. AttentionGAN-for-Cloud-removal-master/data/__pycache__/
  6. AttentionGAN-for-Cloud-removal-master/data/__pycache__/__init__.cpython-37.pyc 149B
  7. AttentionGAN-for-Cloud-removal-master/data/__pycache__/__init__.cpython-38.pyc 145B
  8. AttentionGAN-for-Cloud-removal-master/data/__pycache__/aligned_dataset.cpython-37.pyc 2.45KB
  9. AttentionGAN-for-Cloud-removal-master/data/__pycache__/base_data_loader.cpython-37.pyc 690B
  10. AttentionGAN-for-Cloud-removal-master/data/__pycache__/base_data_loader.cpython-38.pyc 706B
  11. AttentionGAN-for-Cloud-removal-master/data/__pycache__/base_dataset.cpython-37.pyc 2.52KB
  12. AttentionGAN-for-Cloud-removal-master/data/__pycache__/base_dataset.cpython-38.pyc 2.55KB
  13. AttentionGAN-for-Cloud-removal-master/data/__pycache__/custom_dataset_data_loader.cpython-37.pyc 2.1KB
  14. AttentionGAN-for-Cloud-removal-master/data/__pycache__/custom_dataset_data_loader.cpython-38.pyc 2.14KB
  15. AttentionGAN-for-Cloud-removal-master/data/__pycache__/data_loader.cpython-37.pyc 414B
  16. AttentionGAN-for-Cloud-removal-master/data/__pycache__/data_loader.cpython-38.pyc 414B
  17. AttentionGAN-for-Cloud-removal-master/data/__pycache__/image_folder.cpython-37.pyc 2.03KB
  18. AttentionGAN-for-Cloud-removal-master/data/__pycache__/image_folder.cpython-38.pyc 2.07KB
  19. AttentionGAN-for-Cloud-removal-master/data/__pycache__/unaligned_dataset.cpython-37.pyc 1.99KB
  20. AttentionGAN-for-Cloud-removal-master/data/__pycache__/unaligned_dataset.cpython-38.pyc 2KB
  21. AttentionGAN-for-Cloud-removal-master/data/__pycache__/unaligned_dataset3.cpython-37.pyc 2.04KB
  22. AttentionGAN-for-Cloud-removal-master/data/__pycache__/unaligned_dataset_sar.cpython-37.pyc 2.2KB
  23. AttentionGAN-for-Cloud-removal-master/data/__pycache__/unaligned_dataset_sar.cpython-38.pyc 2.22KB
  24. AttentionGAN-for-Cloud-removal-master/data/aligned_dataset.py 2.35KB
  25. AttentionGAN-for-Cloud-removal-master/data/aligned_random_dataset.py 1.47KB
  26. AttentionGAN-for-Cloud-removal-master/data/base_data_loader.py 195B
  27. AttentionGAN-for-Cloud-removal-master/data/base_dataset.py 2.43KB
  28. AttentionGAN-for-Cloud-removal-master/data/base_dataset.pyc 3.63KB
  29. AttentionGAN-for-Cloud-removal-master/data/coco_dataset.py 2.13KB
  30. AttentionGAN-for-Cloud-removal-master/data/cocoseg_dataset.py 3.82KB
  31. AttentionGAN-for-Cloud-removal-master/data/custom_dataset_data_loader.py 1.83KB
  32. AttentionGAN-for-Cloud-removal-master/data/data_loader.py 229B
  33. AttentionGAN-for-Cloud-removal-master/data/data_loader.pyc 539B
  34. AttentionGAN-for-Cloud-removal-master/data/image_folder.py 1.9KB
  35. AttentionGAN-for-Cloud-removal-master/data/image_folder.pyc 2.95KB
  36. AttentionGAN-for-Cloud-removal-master/data/single_dataset.py 1.07KB
  37. AttentionGAN-for-Cloud-removal-master/data/unaligned_dataset.py 1.94KB
  38. AttentionGAN-for-Cloud-removal-master/data/unaligned_dataset3.py 2.04KB
  39. AttentionGAN-for-Cloud-removal-master/data/unaligned_dataset_sar.py 2.31KB
  40. AttentionGAN-for-Cloud-removal-master/environment.yaml 2.32KB
  41. AttentionGAN-for-Cloud-removal-master/fig/
  42. AttentionGAN-for-Cloud-removal-master/fig/pipline.png 5.53MB
  43. AttentionGAN-for-Cloud-removal-master/fig/result.png 6.61MB
  44. AttentionGAN-for-Cloud-removal-master/map.npy 256.13KB
  45. AttentionGAN-for-Cloud-removal-master/metrics.py 1.15KB
  46. AttentionGAN-for-Cloud-removal-master/models/
  47. AttentionGAN-for-Cloud-removal-master/models/Saroptgan.py 6.01KB
  48. AttentionGAN-for-Cloud-removal-master/models/__init__.py
  49. AttentionGAN-for-Cloud-removal-master/models/__pycache__/
  50. AttentionGAN-for-Cloud-removal-master/models/__pycache__/Saroptgan.cpython-37.pyc 4.91KB
  51. AttentionGAN-for-Cloud-removal-master/models/__pycache__/__init__.cpython-37.pyc 151B
  52. AttentionGAN-for-Cloud-removal-master/models/__pycache__/__init__.cpython-38.pyc 147B
  53. AttentionGAN-for-Cloud-removal-master/models/__pycache__/base_model.cpython-37.pyc 3.13KB
  54. AttentionGAN-for-Cloud-removal-master/models/__pycache__/base_model.cpython-38.pyc 3.19KB
  55. AttentionGAN-for-Cloud-removal-master/models/__pycache__/cycle_attn_gan_model.cpython-37.pyc 8.51KB
  56. AttentionGAN-for-Cloud-removal-master/models/__pycache__/cycle_attn_gan_model_sar.cpython-37.pyc 9.14KB
  57. AttentionGAN-for-Cloud-removal-master/models/__pycache__/cycle_attn_gan_model_sar2.cpython-37.pyc 8.92KB
  58. AttentionGAN-for-Cloud-removal-master/models/__pycache__/cycle_gan_model.cpython-37.pyc 6.47KB
  59. AttentionGAN-for-Cloud-removal-master/models/__pycache__/models.cpython-37.pyc 2.11KB
  60. AttentionGAN-for-Cloud-removal-master/models/__pycache__/models.cpython-38.pyc 2.13KB
  61. AttentionGAN-for-Cloud-removal-master/models/__pycache__/networks.cpython-37.pyc 29.22KB
  62. AttentionGAN-for-Cloud-removal-master/models/__pycache__/networks.cpython-38.pyc 28.52KB
  63. AttentionGAN-for-Cloud-removal-master/models/__pycache__/pix2pix_attn_model.cpython-37.pyc 6.65KB
  64. AttentionGAN-for-Cloud-removal-master/models/__pycache__/pix2pix_attn_model.cpython-38.pyc 7.46KB
  65. AttentionGAN-for-Cloud-removal-master/models/__pycache__/pix2pix_attn_model2.cpython-37.pyc 5.52KB
  66. AttentionGAN-for-Cloud-removal-master/models/__pycache__/pix2pix_attn_model3.cpython-37.pyc 6.79KB
  67. AttentionGAN-for-Cloud-removal-master/models/__pycache__/pix2pix_attn_model31.cpython-37.pyc 6.46KB
  68. AttentionGAN-for-Cloud-removal-master/models/__pycache__/pix2pix_attn_model4.cpython-37.pyc 7.4KB
  69. AttentionGAN-for-Cloud-removal-master/models/__pycache__/pix2pix_attn_model4.cpython-38.pyc 7.48KB
  70. AttentionGAN-for-Cloud-removal-master/models/__pycache__/pix2pix_attn_model5.cpython-37.pyc 6.57KB
  71. AttentionGAN-for-Cloud-removal-master/models/__pycache__/pix2pix_attn_model6.cpython-37.pyc 6.65KB
  72. AttentionGAN-for-Cloud-removal-master/models/__pycache__/pix2pix_attn_model7.cpython-37.pyc 7.46KB
  73. AttentionGAN-for-Cloud-removal-master/models/__pycache__/pix2pix_attn_model8.cpython-37.pyc 6.57KB
  74. AttentionGAN-for-Cloud-removal-master/models/__pycache__/pix2pix_model.cpython-37.pyc 5.09KB
  75. AttentionGAN-for-Cloud-removal-master/models/__pycache__/pix2pix_model2.cpython-37.pyc 5.1KB
  76. AttentionGAN-for-Cloud-removal-master/models/__pycache__/pix2pix_model3.cpython-37.pyc 4.65KB
  77. AttentionGAN-for-Cloud-removal-master/models/base_model.py 2.36KB
  78. AttentionGAN-for-Cloud-removal-master/models/base_model.pyc 4.1KB
  79. AttentionGAN-for-Cloud-removal-master/models/cycle_attn_gan_model.py 13.46KB
  80. AttentionGAN-for-Cloud-removal-master/models/cycle_attn_gan_model.pyc 12.89KB
  81. AttentionGAN-for-Cloud-removal-master/models/cycle_attn_gan_model_sar.py 14.72KB
  82. AttentionGAN-for-Cloud-removal-master/models/cycle_attn_gan_model_sar2.py 14.1KB
  83. AttentionGAN-for-Cloud-removal-master/models/cycle_gan_model.py 9.17KB
  84. AttentionGAN-for-Cloud-removal-master/models/map.npy 256.13KB
  85. AttentionGAN-for-Cloud-removal-master/models/models.py 2.5KB
  86. AttentionGAN-for-Cloud-removal-master/models/models.pyc 4.13KB
  87. AttentionGAN-for-Cloud-removal-master/models/networks.py 41.97KB
  88. AttentionGAN-for-Cloud-removal-master/models/pix2pix_attn_model.py 10.92KB
  89. AttentionGAN-for-Cloud-removal-master/models/pix2pix_model.py 6.09KB
  90. AttentionGAN-for-Cloud-removal-master/models/pix2pix_model2.py 6.26KB
  91. AttentionGAN-for-Cloud-removal-master/models/pix2pix_model3.py 5.47KB
  92. AttentionGAN-for-Cloud-removal-master/models/test_model.py 1.58KB
  93. AttentionGAN-for-Cloud-removal-master/options/
  94. AttentionGAN-for-Cloud-removal-master/options/__pycache__/
  95. AttentionGAN-for-Cloud-removal-master/options/__pycache__/base_options.cpython-37.pyc 5.11KB
  96. AttentionGAN-for-Cloud-removal-master/options/__pycache__/base_options.cpython-38.pyc 5.13KB
  97. AttentionGAN-for-Cloud-removal-master/options/__pycache__/test_options.cpython-37.pyc 994B
  98. AttentionGAN-for-Cloud-removal-master/options/__pycache__/test_options.cpython-38.pyc 1KB
  99. AttentionGAN-for-Cloud-removal-master/options/__pycache__/train_options.cpython-37.pyc 2.79KB
  100. AttentionGAN-for-Cloud-removal-master/options/__pycache__/train_options.cpython-38.pyc 2.79KB
  101. AttentionGAN-for-Cloud-removal-master/options/base_options.py 7.09KB
  102. AttentionGAN-for-Cloud-removal-master/options/test_options.py 846B
  103. AttentionGAN-for-Cloud-removal-master/options/train_options.py 3.26KB
  104. AttentionGAN-for-Cloud-removal-master/options/train_options.pyc 4.08KB
  105. AttentionGAN-for-Cloud-removal-master/pytorch_ssim/
  106. AttentionGAN-for-Cloud-removal-master/pytorch_ssim/__init__.py 2.57KB
  107. AttentionGAN-for-Cloud-removal-master/pytorch_ssim/__pycache__/
  108. AttentionGAN-for-Cloud-removal-master/pytorch_ssim/__pycache__/__init__.cpython-37.pyc 2.53KB
  109. AttentionGAN-for-Cloud-removal-master/pytorch_ssim/__pycache__/__init__.cpython-38.pyc 2.57KB
  110. AttentionGAN-for-Cloud-removal-master/requirements.txt 1.83KB
  111. AttentionGAN-for-Cloud-removal-master/scripts/
  112. AttentionGAN-for-Cloud-removal-master/scripts/test.sh 222B
  113. AttentionGAN-for-Cloud-removal-master/scripts/train.sh 319B
  114. AttentionGAN-for-Cloud-removal-master/test.py 1.29KB
  115. AttentionGAN-for-Cloud-removal-master/train.py 1.88KB
  116. AttentionGAN-for-Cloud-removal-master/util/
  117. AttentionGAN-for-Cloud-removal-master/util/__pycache__/
  118. AttentionGAN-for-Cloud-removal-master/util/__pycache__/html.cpython-37.pyc 2.22KB
  119. AttentionGAN-for-Cloud-removal-master/util/__pycache__/html.cpython-38.pyc 2.24KB
  120. AttentionGAN-for-Cloud-removal-master/util/__pycache__/image_pool.cpython-37.pyc 1.71KB
  121. AttentionGAN-for-Cloud-removal-master/util/__pycache__/image_pool.cpython-38.pyc 1.7KB
  122. AttentionGAN-for-Cloud-removal-master/util/__pycache__/util.cpython-37.pyc 4.08KB
  123. AttentionGAN-for-Cloud-removal-master/util/__pycache__/util.cpython-38.pyc 4.15KB
  124. AttentionGAN-for-Cloud-removal-master/util/__pycache__/visualizer.cpython-37.pyc 4.67KB
  125. AttentionGAN-for-Cloud-removal-master/util/__pycache__/visualizer.cpython-38.pyc 4.71KB
  126. AttentionGAN-for-Cloud-removal-master/util/get_data.py 3.43KB
  127. AttentionGAN-for-Cloud-removal-master/util/html.py 1.82KB
  128. AttentionGAN-for-Cloud-removal-master/util/html.pyc 3.03KB
  129. AttentionGAN-for-Cloud-removal-master/util/image_pool.py 2.45KB
  130. AttentionGAN-for-Cloud-removal-master/util/image_pool.pyc 2.32KB
  131. AttentionGAN-for-Cloud-removal-master/util/inception_classify.py 2.92KB
  132. AttentionGAN-for-Cloud-removal-master/util/png.py 978B
  133. AttentionGAN-for-Cloud-removal-master/util/util.py 3.19KB
  134. AttentionGAN-for-Cloud-removal-master/util/util.pyc 5.72KB
  135. AttentionGAN-for-Cloud-removal-master/util/visualizer.py 6.34KB
  136. AttentionGAN-for-Cloud-removal-master/util/visualizer.pyc 6.36KB
0评论
提交 加载更多评论
其他资源 utf8格式的csv 2023年区域代码
utf8格式的csv 2023年区域代码
中兴F7015TV3 telnet工具
中兴F7015TV3 telnet工具,无毒,杀毒软件误报
jquery实现的文本框计数功能
我所在的公司前端比较老,用的jquery,bootstarp这一套技术,当有一天需要实现文本框计数的功能,找了很多资料,都没有很好的,于是自己写了一个,仅依赖jquery,适用于传统项目。
3D(EF)最小系统板
3D(EF)最小系统板
C++临时实现的数据分片
C++临时实现的数据分片
满分之路CSP-J模拟卷.zip
满分之路CSP-J模拟卷.zip
满分之路CSP-J模拟卷.zip 满分之路CSP-J模拟卷.zip 满分之路CSP-J模拟卷.zip
dianlamfe click, best resource
dianlamfe click, best resource
使用 nVidia Inspector 提高 nVidia GTX 性能
最近,当我试图同时提高和稳定我的 FPS 时,我接触到了这个软件。它显示了其他细节,但最重要的是,我认为它通过使用其针对 W:ET 的特定配置文件改善了我的 ET 游戏体验。到目前为止,我觉得我的 ET 图形更加流畅,并且与过去几天相比,锯齿状的角落和墙壁减少了。如何使用配置文件显示在 YouTube 视频链接中,使用风险自负。VIDIA Inspector 是 Orbmu2k 开发的一款工具。它提供与 GPU-Z 类似的详细硬件信息,这些信息来自与显卡相关的所有可用硬件传感器。这些传感器信息也可以通过附带的监视器进行监控,然后记录到 CSV 文件中以供日后查看。Inspector 还提供简单的超频工具来控制显卡的 GPU 时钟、内存时钟、着色器时钟、电压和风扇速度;但是,并非所有用户都可以使用所有这些选项。 NVIDIA Inspector 的真正强大之处在于其驱动程序配置文件设置(游戏配置文件)。Inspector 包含超过两百个单独的游戏配置文件。配置文件允许用户定义特定于游戏的 Inspector 预设,这些预设将在游戏启动时加载和使用。