首页 星云 工具 资源 星选 资讯 热门工具
:

PDF转图片 完全免费 小红书视频下载 无水印 抖音视频下载 无水印 数字星空

Spherical Voxelization

编程知识
2024年08月23日 11:27

Spherical Voxelization

  • 标签: voxelization
  • AI 摘要: 文档介绍了球面体素化的过程,包括重要的类和方法,如ConvertToSphericalVoxel和spherical_voxel_optimized,详细解释了参数及其作用。球面体素化通过将点云转换为球面坐标系,利用自适应采样权重来平衡不同纬度区域的点密度,从而有效捕捉几何特征。文中还提到C++绑定的sv.compute函数,负责体素特征的计算与填充,确保在特征计算中考虑邻近体素的信息。
  • 最相关链接: https://github.com/CVLAB-Unibo/compass

Spherical Voxelization

参考链接:

代码组成:

ConvertToSphericalVoxel类:最高接口,实例化一个converter类,调用convert转换局部点云
↓
spherical_voxel_optimized方法:在convert中调用,实现转换,先转换到球面坐标系,然后进行体素化
↓
spherical_voxel.compute方法:最终实现体素化,用pybind绑定C++代码最终实现

ConvertToSphericalVoxel

from utils import geometry as ug

class ConvertToSphericalVoxel():

    """
    Convert point cloud to spherical voxel [beta = 2 * bandwidth,  alfa = 2 * bandwidth, num_radial_division].
    Alfa in [0, 2pi], Beta in [0, pi]
    """

    def __init__(self, bandwidth, radius_support, num_radial_division, num_points, random_sampling):

        self.bandwidth = bandwidth
        self.radius_support = radius_support
        self.num_radial_division = num_radial_division
        self.num_points = num_points
        self.random_sampling = random_sampling

    def __call__(self, point_cloud):

        features, pts_normed = ug.spherical_voxel_optimized(points=point_cloud,
                                                size_bandwidth=self.bandwidth,
                                                size_radial_divisions=self.num_radial_division,
                                                radius_support=self.radius_support,
                                                do_random_sampling=self.random_sampling,
                                                num_random_points=self.num_points)

        return features, pts_normed
……

参数解释:

  • bandwidth: 球面体素化的带宽,通常用于定义球面信号的分辨率。它决定了角度方向上的采样密度(球面坐标系的\(\beta\)\(\alpha\)),影响了球面信号的分辨率,PRIN, LMVD, Compess等设置为24。
  • radius_support: 支持半径,定义了local patch的支持半径,也就是说它确定了从关键点向外延伸的范围内哪些点将被纳入local patch。
  • num_radial_division: 表示径向(从关键点向外辐射的方向)上的分割数目。它影响了在径向方向上球面信号的分辨率。
  • num_points: 采样点的数量,这个值与local patch的固定点数一致(即1024点),确保输入到转换过程中的点数是一致的,这对于后续处理和模型输入非常重要。
  • random_sampling: 控制是否在从点云中选择点时进行随机采样,设置为 True 使得在局部区域内的点采样更加多样化,避免由于局部密度过高或过低而导致的信息丢失。随机采样可以让网络更具鲁棒性,适应不同点云的分布。

spherical_voxel_optimized

def spherical_voxel_optimized(points: np.ndarray, size_bandwidth: int, size_radial_divisions: int,
                              radius_support: float, do_random_sampling: bool, num_random_points: int) \
        -> Tuple[np.ndarray, np.ndarray]:
    """Compute spherical voxel using the C++ code.

    Compute Spherical Voxel signal as defined in:
    Pointwise Rotation-Invariant Network withAdaptive Sampling and 3D Spherical Voxel Convolution.
    Yang You, Yujing Lou, Qi Liu, Yu-Wing Tai, Weiming Wang, Lizhuang Ma and Cewu Lu.
    AAAI 2020.

    :param points: the points to convert.
    :param size_bandwidth: alpha and beta bandwidth.
    :param size_radial_divisions: the number of bins along radial dimension.
    :param radius_support: the radius used to compute the points in the support.
    :param do_random_sampling: if true a subset of random points will be used to compute the spherical voxel.
    :param num_random_points: the number of points to keep if do_random_sampling is true.

    :return: A tuple containing:
        The spherical voxel, shape(size_radial_divisions, 2 * size_bandwidth, 2 * size_bandwidth).
        The points used to compute the signal normalized according the the farthest point.
    """
    if do_random_sampling:
        min_limit = 1 if points.shape[0] > 1 else 0
        indices_random = np.random.randint(min_limit, points.shape[0], num_random_points)
        points = points[indices_random]

    pts_norm = np.linalg.norm(points, axis=1)
    # Scale points to fit unit sphere
    pts_normed = points / pts_norm[:, None]
    pts_normed = np.clip(pts_normed, -1, 1)

    pts_s2_coord = S2.change_coordinates(pts_normed, p_from='C', p_to='S')
    # Convert to spherical voxel indices
    pts_s2_coord[:, 0] *= 2 * size_bandwidth / np.pi  # [0, pi]
    pts_s2_coord[:, 1] *= size_bandwidth / np.pi # raw 2*size_bandwidth/2*np.pi
    pts_s2_coord[:, 1][pts_s2_coord[:, 1] < 0] += 2 * size_bandwidth

    # Adaptive sampling factor sin{pi*[(1/2,..., 2*size_bandwidth+1/2)/(2*size_bandwidth)]}
    # 能更好的聚合点云信息,但是也会导致更多的形变,有得必有失
    daas_weights = np.sin(np.pi * (2 * np.arange(2 * size_bandwidth) + 1) / 4 / size_bandwidth).astype(np.float32)
    voxel = np.asarray(sv.compute(pts_on_s2=pts_s2_coord,
                                  pts_norm=pts_norm,
                                  size_bandwidth=size_bandwidth,
                                  size_radial_divisions=size_radial_divisions,
                                  radius_support=radius_support,
                                  daas_weights=daas_weights))
    pts_normed = points / np.max(pts_norm)
    return voxel.astype(np.float32), pts_normed.astype(np.float32)
  • pts_norm是local patch的点云径向距离,所以local patch输入的时候最好经过对于关键点的中心化操作,不然径向距离会是关于坐标系原点的。
  • S2.change_coordinates 用于将点云从笛卡尔坐标系转换成球面坐标系,球面坐标系解释见WIKI,简单来说就是两个坐标,维度角度坐标\beta,和经度角度坐标\alpha
  • daas_weights是自适应权重:
    • 采样密度平衡:在球面坐标系中,由于纬度(通常用β表示)不同区域的面积差异,不同区域的点密度会有所不同。例如,在球面的极地区域(纬度接近0π的区域),同样的角度变化可能覆盖的球面面积较小,而在赤道区域,面积较大。为了避免在这些区域中出现过度或不足的采样,自适应采样权重用于平衡不同纬度区域的影响。
    • 信息保持:通过在不同的纬度上使用不同的采样权重,可以更精确地保留球面上重要的几何特征,特别是在特定的关键区域。这样可以确保球面信号在高纬度和低纬度区域都能有效地捕捉到有意义的几何信息。
  • sv.compute 用于体素转换。

sv.compute

该函数是用pybind绑定的C++方法,文件为spherical_voxel.cc ,代码解释如下:

初始化

    const float interval = radius_support / (size_radial_divisions);
    std::vector<std::vector<std::vector<std::vector<std::vector<float> > > > > grids;
    std::vector<std::vector<std::vector<float> > > features;
   
    grids.resize(size_radial_divisions);
    features.resize(size_radial_divisions);
  
    for (auto &beta: grids) {
	      beta.resize(2 * size_bandwidth);
	      for (auto &alpha: beta) {
	          alpha.resize(2 * size_bandwidth);
	      }
    }

    for (auto &beta: features) {
        beta.resize(2 * size_bandwidth);
        for (auto &alpha: beta) {
            alpha.resize(2 * size_bandwidth, 0);
        }
    }
  • interval表示径向分割下每个体素的径向长度
  • grids用来存储每个体素覆盖的所有点,可以通过下面的初始化看到,会初始化径向,维度,经度,每个体素是一种voxel
  • feature用来存储最终每个体素的特征(特征是密度特征)

grids填充

    // mapping the points to the voxel grid
    for (size_t i = 0; i < pts_on_s2.size(); i++) {
        int r_idx = int(pts_norm[i] / interval);
        // except for the points radius larger than radius_support
        if (r_idx > size_radial_divisions - 1) r_idx = size_radial_divisions - 1; 

        int beta_idx = int(pts_on_s2[i][0] + 0.5f);
        if (beta_idx > 2 * size_bandwidth - 1) beta_idx = 2 * size_bandwidth - 1;

        int alpha_idx = int(pts_on_s2[i][1] + 0.5f);
        if (alpha_idx > 2 * size_bandwidth - 1) alpha_idx = 2 * size_bandwidth - 1;

        grids[r_idx][beta_idx][alpha_idx].emplace_back(std::vector<float>{pts_norm[i], pts_on_s2[i][0], pts_on_s2[i][1]});
    }

这里会遍历每个点,计算每个点的径向体素所用r_idx,纬度体素索引beta_idx,经度体素索引alpha_idx ,然后push到对应的体素里面。

feature计算

首先计算每个体素的经度左右特征计算边界leftright(也就是说每个体素的特征计算并不仅仅只考虑本体素内部,还有一些可能出现的相邻体素),这里计算左右边界就用到自适应权重,维度高的,左右边界会宽一些。

之后根据左右边界访问对应体素,并取出体素中所有点,基于径向距离确定点是否靠近本体素中心,越靠近该点的特征权重越大([0, 1])。

然后考虑径向相邻体素内部的点,用于本体素的特征计算,因为从径向考虑,点分布相对连续,需要补充这样的信息。

最后计算本体素的特征(密度特征(加过权的点个数))

    // compute the feature of each voxel
    for (size_t i = 0; i < size_radial_divisions; i++) {
        for (size_t j = 0; j < 2 * size_bandwidth; j++) {
            for (size_t k = 0; k < 2 * size_bandwidth; k++) {
                const float left = std::max(0.f, k - 0.5f / daas_weights[j]);
                const float right = std::min(2.f * size_bandwidth, k + 0.5f / daas_weights[j]);
                float sum = 0.f;
                int cnt = 0;

                for (int m = int(left + 0.5f); m < int(right + 0.5f); m++) {
                    for (int n = 0; n < grids[i][j][m].size(); n++) {
                        if (grids[i][j][m][n][2] > left && grids[i][j][m][n][2] < right) {
                            sum += 1.f - std::abs(grids[i][j][m][n][0] / interval - (i + 1)); // radial feature weight
                            cnt++;
                        }
                    }
                    
                    // 在实际情况中,点云数据可能分布在两个相邻的径向分割之间,
                    // 尤其是当点的径向距离位于两个径向分割的边界附近时。
                    // 为了防止因单纯考虑当前径向分割而导致信息的丢失,
                    // 代码会查找相邻径向分割中满足条件的点,并将它们的贡献也加到当前体素单元的特征值中。
                    if (i < size_radial_divisions - 1) {
                        for (int n = 0; n < grids[i + 1][j][m].size(); n++) {
                            if (grids[i + 1][j][m][n][2] > left && grids[i + 1][j][m][n][2] < right) {
                                sum += 1.f - std::abs(grids[i + 1][j][m][n][0] / interval - (i + 1));
                                cnt++;
                            }
                        }
                    }
                }

                // 与径向分割不同,纬度分割(即 beta 方向)代表的是球面坐标中的角度,
                // 分割的区域代表不同的“环”或“带”。
                // 在这种情况下,每个纬度分割对应的球面区域是明确的,
                // 且这些分割区域之间没有交叉,因此点不会“跨越”到另一个纬度分割。

                if (cnt > 0) {
                    features[i][j][k] = sum / cnt;
                }
            }
        }
    }
From:https://www.cnblogs.com/name555difficult/p/18375759
本文地址: http://www.shuzixingkong.net/article/1375
0评论
提交 加载更多评论
其他文章 傅里叶变换
傅里叶变换 对于周期信号,如果满足 \(Dirichlet\) 条件,就可以尝试将其分解为傅里叶级数,并绘制成频谱的形式,但是在实际使用的过程中我们遇到的信号往往既不是周期的信号又难以获取解析式。对于复杂的现实信号,我们可以将问题的难点拆分开,我们先解决不是周期信号但解析式已知的情况,再去解决难以获
傅里叶变换
小公司后端架构、代码、流程吐槽
自从入职以来越来越难顶小公司的后端架构、代码结构 前提 任何的架构、代码,都离不开业务,用户量,所以需要提前说明一下 就我一个后端开发,需要负责日常开发、运维、架构方案设计 两年多经验,可能一些东西考虑的不是很周全,只根据当下的认知吐槽,可能下个月觉得现在幼稚 后台用户量不过万,物联网行业 简单吐槽
小公司后端架构、代码、流程吐槽 小公司后端架构、代码、流程吐槽 小公司后端架构、代码、流程吐槽
Python开发中,日期时间的相关处理
在Python开发中,日期和时间处理是一个常见的需求。Python提供了多种模块和方法来处理日期和时间,以下是一些常用的模块和操作。通过介绍一些系统的Python类库以及第三方的类库,我们可以快速的实现各种时间日期历法节气等相关信息的处理。
Python开发中,日期时间的相关处理 Python开发中,日期时间的相关处理
计算机组成原理【2】: 数据的表示和运算-上
概述 数制与编码 进位计数制及其相互转换;定点数的编码表示 运算方法和运算电路 基本运算部件:加法器;算术逻辑单元(ALU) 加减运算:补码加/减运算器;标志位的生成 乘/除运算:乘/除法运算的基本原理;乘法电路和除法电路的基本结构 数制与编码 进位计数制及其相互转换 采用二进制编码的原因 二进制只
计算机组成原理【2】: 数据的表示和运算-上 计算机组成原理【2】: 数据的表示和运算-上 计算机组成原理【2】: 数据的表示和运算-上
【故障公告】博客站点遭遇大规模 DDoS 攻击
今天 12:24 开始收到阿里云的电话、短信与邮件通知,博客站点的其中一台负载均衡因 DDoS 攻击被阿里云屏蔽 您的IP: x.x.x.x 实例名称:yy 受到攻击,攻击流量已超过DDoS基础防护的黑洞阈值,服务器的所有公网访问已被屏蔽,屏蔽时长20分钟,屏蔽时间内未再次被攻击将自动解除否则会延期
线性dp:最长公共子序列
最长公共子序列 本文讲解的题与leetcode1143.最长公共子序列这题一样,阅读完可以挑战一下。 力扣题目链接 题目叙述: 给定两个字符串,输出其最长公共子序列,并输出它的长度 输入: ADABEC和DBDCA 输出: DBC 3 解释 最长公共子序列是DBC,其长度为3 动态规划思路: 我们这
线性dp:最长公共子序列 线性dp:最长公共子序列 线性dp:最长公共子序列
《数据资产管理核心技术与应用》读书笔记-第五章:数据服务(一)
《数据资产管理核心技术与应用》是清华大学出版社出版的一本图书,全书共分10章,第1章主要让读者认识数据资产,了解数据资产相关的基础概念,以及数据资产的发展情况。第2~8章主要介绍大数据时代数据资产管理所涉及的核心技术,内容包括元数据的采集与存储、数据血缘、数据质量、数据监控与告警、数据服务、数据权限
《数据资产管理核心技术与应用》读书笔记-第五章:数据服务(一) 《数据资产管理核心技术与应用》读书笔记-第五章:数据服务(一) 《数据资产管理核心技术与应用》读书笔记-第五章:数据服务(一)
AI的那些名词
AI 是什么? Artificial Intelligence,即人工智能,1956年于Dartmouth学会上提出,一种旨在以类似人类反应的方式对刺激做出反应并从中学习的技术,其理解和判断水平通常只能在人类的专业技能中找到。AI因具备自主学习和认知能力,可进行自我调整和改进,从而应对更加复杂的任务