首页 星云 工具 资源 星选 资讯 热门工具
:

PDF转图片 完全免费 小红书视频下载 无水印 抖音视频下载 无水印 数字星空

MViT:性能杠杠的多尺度ViT | ICCV 2021

编程知识
2024年07月17日 12:43

论文提出了多尺度视觉Transformer模型MViT,将多尺度层级特征的基本概念与Transformer模型联系起来,在逐层扩展特征复杂度同时降低特征的分辨率。在视频识别和图像分类的任务中,MViT均优于单尺度的ViT

来源:晓飞的算法工程笔记 公众号

论文: Multiscale Vision Transformers

Introduction


  论文提出了用于视频和图像识别的多尺度ViT(MViT),将FPN的多尺度层级特征结构与Transformer联系起来。MViT包含几个不同分辨率和通道数的stage,从小通道的输入分辨率开始,逐层地扩大通道数以及降低分辨率,形成多尺度的特征金字塔。

  在视频识别任务上,不使用任何外部预训练数据,MViT比视频Transformer模型有显着的性能提升。而在ImageNet图像分类任务上,简单地删除一些时间相关的通道后,MViT比用于图像识别的单尺度ViT的显着增益。

Multiscale Vision Transformer (MViT)


  通用多尺度Transformer架构的核心在于多stage的设计,每个stage由多个具有特定分辨率和通道数的Transformer block组成。多尺度Transformers逐步扩大通道容量,同时逐步池化从输入到输出的分辨率。

Multi Head Pooling Attention

  多头池化注意(MHPA)是一种自注意操作,可以在Transformer block中实现分辨率灵活的建模,使得多尺度Transformer可在逐渐变化的分辨率下运行。与通道和分辨率固定的原始多头注意(MHA)操作相比,MHPA池化通过降低张量的分辨率来缩减输入的整体序列长度。

  对于序列长度为 \(L\)\(D\) 维输入张量 \(X\)\(X \in \mathbb{R}^{L\times D}\),根据MHA的定义先通过线性运算将输入\(X\)映射为Query张量\(\hat{Q} \in \mathbb{R}^{L\times D}\)Key张量\(\hat{K} \in \mathbb{R}^{L\times D}\)Value张量\(\hat{V} \in \mathbb{R}^{L\times D}\)

  然后通过池化操作\(\mathcal{P}\)将上述张量缩减到特定长度。

  • Pooling Operator

  在进行计算之前,中间张量\(\hat{Q}\)\(\hat{K}\)\(\hat{V}\)需要经过池化运算\(\mathcal{P}(·; \Theta)\)的池化,这是的MHPAMViT的基石。

  运算符\(\mathcal{P}(·; \Theta)\)沿每个通道对输入张量执行池化核计算。将\(\Theta\)分解为\(\Theta := (k, s, p)\),运算符使用维度\(k\)\(k_T\times k_H\times k_W\)、步幅\(s\)\(s_T\times s_H \times s_W\)、填充\(p\)\(p_T\times p_H\times p_W\)的池化核\(k\),将维度为\(L = T\times H\times W\)的输入张量减少到\(\tilde{L}\)

  通过坐标公式计算,将池化的张量展开得到输出\(\mathcal{P}(Y ; \Theta)\in \mathbb{R}^\tilde{L}\times D\),序列长度减少为\(\tilde{L}= \tilde{T}\times \tilde{H}\times \tilde{W}\)

  默认情况下,MPHA的重叠内核\(k\)会选择保持形状的填充值\(p\),因此输出张量\(\mathcal{P}(Y ; \Theta)\)的序列长度能够降低\(\tilde{L}\)整体减少\(s_{T}s_{H}s_{W}\)倍。

  • Pooling Attention.

  池化运算符\(\mathcal{P}(\cdot; \Theta)\)在所有\(\hat{Q}\)\(\hat{K}\)\(\hat{V}\)中间张量中是独立的,使用不同的池化核\(k\)、不同的步长\(s\)以及不同的填充\(p\)。定义\(\theta\)产生的池化后pre-attention向量为\(Q = P(\hat{Q}; \Theta_Q)\), \(K = P(\hat{K}; \Theta_K)\)\(V = P(\hat{V}; \Theta_V)\),随后在这些向量上进行注意力计算:

  根据矩阵乘积可知,上述公式会引入\(S_K=S_V\)的约束。总体而言,池化注意力的完整计算如下:

\(\sqrt{d}\)用于按行归一化内积矩阵。池化注意力计算的输出序列长度的缩减跟\(\mathcal{P}(\cdot)\)中的\(Q\)向量一样,为步长相关的\(s^Q_TS^Q_HS^Q_W\)倍。

  • Multiple heads.

  与常规的注意力操作一样,MHPA可通过\(h\)个头来并行化计算,将\(D\)维输入张量\(X\)的平均分成\(h\)个非重叠子集,分别执行注意力计算。

  • Computational Analysis.

QKV张量的长度缩减对多尺度Transformer模型的基本计算和内存需求具有显着的好处,序列长度缩减可表示为:

  考虑到\(\mathcal{P}(·; \Theta)\)的输入张量具有通道\(D\times T\times H\times W\)MHPA的每个头的运行时复杂度为\(O(T HW D/h(D + T HW/f_Q f_K))\)和内存复杂度为\(O(T HW h(D/h + T HW/f_Q f_K))\)

  另外,通过对通道数\(D\)和序列长度项\(THW/f_Q f_K\)之间的权衡,可指导架构参数的设计选择,例如头数和层宽。

Multiscale Transformer Networks

  • Preliminaries: Vision Transformer (ViT)

ViT\(T\times H\times W\)的输入切分成\(1\times 16\times 16\)的不重叠小方块,通过point-wise的线性变换映射成\(D\)维向量。

  随后将positional embedding \(E\in \mathbb{R}^{L\times D}\)添加到长度为\(L\)、通道为\(D\)的投影序列中,对位置信息进行编码以及打破平移不变性。最后,将可学习的class embedding附加到投影序列中。

  得到的长度为\(L + 1\)的序列由\(N\)Transformer block依次处理,每个Transformer block都包含MHAMLPLN操作。定义\(X\)视为输入,单个Transformer block的输出\(Block(X)\)的计算如下:

\(N\)个连续block处理后的结果序列会被层归一化,随后将class embedding提取并通过线性层预测所需的输出。默认情况下,MLP的隐藏层通道是\(4D\)。另外,需要注意的是,ViT在所有块中保持恒定的通道数和空间分辨率。

  • Multiscale Vision Transformers (MViT).

MViT的关键是逐步提高通道通道以及降低空间分辨率,整体结构如表2所示。

  • Scale stages

  每个scale stage包含\(N\)Transformer blockstage内的block输出相同通道数和分辨率的特征。在网络输入处(表2中的cube1),通过三维映射将图像处理为通道数较小(比典型的ViT模型小8倍),但长度很长(比典型的ViT模型高16倍)图像块序列。

  在scale stage之间转移时,需要上采样处理序列的通道数以及下采样处理序列的长度。这样的做法能够有效地降低视觉数据的空间分辨率,使得网络能够在更复杂的特征中理解被处理的信息。

  • Channel expansion

  在stage转移时,通过增加最后一个MLP层的输出来增加通道数。通道数的增加与空间分辨率的缩减相关,假设空间分倍率下采样4倍,那通道数则增加2倍。这样的设计能够在一定程度上保持stage之间的计算复杂度,跟卷积网络的设计理念类似。

  • Query pooling

  由MPHA公式可知,Q张量可控制输出的序列长度,通过步长为\(s\equiv (s^Q_T, s^Q_H, s^Q_W)\)\(\mathcal{P}(Q;k;p;s)\)池化操作将序列长度缩减\(s^Q_T\cdot s^Q_H\cdot s^Q_W\)倍。在每个stage中,仅需在开头中减少分辨率,剩余部分均保持分辨率,所以仅设置stage的首个MHPA操作的步长`\(S^Q > 1\),其余的约束为\(s^Q\equiv (1,1,1)\)

  • Key-Value pooling

  与Q张量不同,改变KV张量的序列长度不会改变输出序列长度,但在降低池化操作的的整体计算复杂度中起着关键作用。

  因此,对KVQ池化的使用进行解耦,Q池化用于每个stage的第一层,KV池化用于剩余的层。由MPHA公式可知,KV张量的序列长度需要相同才能计算注意力权重,因此KV张量池化的步长需要相同。在默认设置中,约束同一stage的池化参数\((k; p; s)\)为相同,即\(\Theta_K ≡ \Theta_V\),但可自适应地改变stage之间的s缩放参数。

  • Skip connections

  如图3所示,由于通道数和序列长度在residual block内发生变化,需要在skip connection中添加\(\mathcal{P}(\cdot; {\Theta}_{Q})\)池化来适应其两端之间的通道不匹配。

  同样地,为了处理stage之间的通道数不匹配,采用一个额外的线性层对MHPA操作的layer-normalized输出进行升维处理。

Network instantiation details

  表3展示了ViTMViT的基本模型的具体结构:

  • ViT-Base(表 3a):将输入映射成尺寸为\(1\times 16\times 16\)且通道为\(D = 768\)的不重叠图像块,然后使用\(N = 12\)Transformer block进行处理。对于\(8\times 224\times 224\)的输入,所有层的分辨率固定为\(768\times 8\times 14\times 14\),序列长度为\(8\times 14\times 14 + 1=1569\)
  • MViT-Base(表 3b):由4个scale stage组成,每个stage都有几个输出尺寸一致的Transformer blockMViT-B通过形状为\(3\times 7\times 7\)的立方体(类似卷积操作)将输入映射且通道为\(D = 96\)的重叠图像块序列,序列长度为\(8\times 56\times 56 + 1 = 25089\)。该序列每经过一个stage,序列长度都会减少4倍,最终输出的序列长度为\(8\times 7\times 7 + 1 = 393\)。同时,通道数也会被上采样2倍,最终增加到768。需要注意,所有池化操作以及分辨率下采样仅在数据序列上执行,不涉及class token embedding

  在scale1 stageMHPA的头数量设置为\(h = 1\),随着通道数增加头数量(保持\(D/h=96\))。在stage转移时,通过MLP前一stage的输出通道增加2倍,并且在下一stage开头对Q执行MHPA池化,其中\(s^{Q} = (1, 2, 2)\)

  在MHPA block中使用\(\Theta_K \equiv \Theta_V\)KV池化,其中,scale1的步长为\(s^{K}=(1,8,8)\)。步长随着stage的分辨率缩小而减少,使得KVblock间保持恒定的缩放比例。

Experiments


Video Recognition

  在五个视频识别数据集上的主要结果对比,MViT均有不错的性能提升。

Image Recognition


  在ImageNet上对比图像分类效果。

Conclusion


  论文提出了多尺度视觉Transformer模型MViT,将多尺度层级特征的基本概念与Transformer模型联系起来,在逐层扩展特征复杂度同时降低特征的分辨率。在视频识别和图像分类的任务中,MViT均优于单尺度的ViT



如果本文对你有帮助,麻烦点个赞或在看呗~
更多内容请关注 微信公众号【晓飞的算法工程笔记】

work-life balance.

From:https://www.cnblogs.com/VincentLee/p/18307144
本文地址: http://www.shuzixingkong.net/article/108
0评论
提交 加载更多评论
其他文章 咬文嚼图式的介绍二叉树、B树/B-树
网上的很多博客都是只有文字说明,比较抽象,所以笔者决定自己画一些图来解释二叉树,二叉搜索树,B树/B-树。
咬文嚼图式的介绍二叉树、B树/B-树 咬文嚼图式的介绍二叉树、B树/B-树 咬文嚼图式的介绍二叉树、B树/B-树
manim边学边做--Matrix
在代数问题中,矩阵是必不可少的工具,manim中提供了一套展示矩阵(Matrix)的模块,专门用于在动画中显示矩阵格式的数据。关于矩阵的类主要有4个: Matrix:通用的矩阵 IntegerMatrix:元素是整数的矩阵 DecimalMatrix:元素包含小数的矩阵 MobjectMatrix:
manim边学边做--Matrix manim边学边做--Matrix manim边学边做--Matrix
利用FastAPI和OpenAI-Whisper打造高效的语音转录服务
最近好久没有写博客了,浅浅记录下如何将OpenAI-Whisper做成Web服务吧🤣 介绍 在这篇指导性博客中,我们将探讨如何在Python中结合使用FastAPI和OpenAI-Whisper。OpenAI-Whisper是一个前沿的语音识别模型,而FastAPI是一个高性能的现代
利用FastAPI和OpenAI-Whisper打造高效的语音转录服务 利用FastAPI和OpenAI-Whisper打造高效的语音转录服务 利用FastAPI和OpenAI-Whisper打造高效的语音转录服务
iOS开发基础109-网络安全
在iOS开发中,保障应用的网络安全是一个非常重要的环节。以下是一些常见的网络安全措施及对应的示例代码: Swift版 1. 使用HTTPS 确保所有的网络请求使用HTTPS协议,以加密数据传输,防止中间人攻击。 示例代码: 在Info.plist中配置App Transport Security (
yearrecord——一个类似痕迹墙的React数据展示组件
介绍一下自己做的一个类似于力扣个人主页提交记录和GitHub主页贡献记录的React组件。 下图分别是力扣个人主页提交记录和GitHub个人主页的贡献记录,像这样类似痕迹墙的形式可以比较直观且高效得展示一段时间内得数据记录。 然而要从0实现这个功能还是有一些麻烦得,并且该功能可用的场景也比较多,于是
yearrecord——一个类似痕迹墙的React数据展示组件 yearrecord——一个类似痕迹墙的React数据展示组件 yearrecord——一个类似痕迹墙的React数据展示组件
Asp .Net Core 系列:基于 T4 模板生成代码
目录简介组成部分分类Visual Studio 中使用T4模板1.创建T4模板文件2. 编写T4模板3. 转换模板中心控制Manager根据 MySQL 数据库生成实体 简介 T4模板,即Text Template Transformation Toolkit,是微软官方在Visual Studio
Asp .Net Core 系列:基于 T4 模板生成代码
从基础到高级应用,详解用Python实现容器化和微服务架构
本文分享自华为云社区《Python微服务与容器化实践详解【从基础到高级应用】》,作者: 柠檬味拥抱。 Python中的容器化和微服务架构实践 在现代软件开发中,容器化和微服务架构已经成为主流。容器化技术使得应用程序可以在任何环境中一致运行,而微服务架构通过将应用拆分成多个独立的服务,从而提升了系统的
可视化—gojs 超多超实用经验分享(三)
目录32.go.Palette 一排放两个33.go.Palette 基本用法34.创建自己指向自己的连线35.设置不同的 groupTemplate 和 linkTemplate36.监听在图形对象 GraphObject 上的右键单击37.定义节点/连线/canvas 背景上的右键菜单38.从节